If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2-9m-30=0
a = 3; b = -9; c = -30;
Δ = b2-4ac
Δ = -92-4·3·(-30)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-21}{2*3}=\frac{-12}{6} =-2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+21}{2*3}=\frac{30}{6} =5 $
| -1.5y=-12 | | 2/3x-3=x+18 | | -17r+8=-26 | | 6w+9=126 | | (-(3/2))y=-12 | | 8n+-10=6 | | 5x+6/3=2x-6/5+7 | | x^2+13.5^2=(3x)^2 | | 7n-15=36 | | x^2+13.5^2=3x^2 | | 7n—15=36 | | 2/3x-2=4x+18 | | 10=√x^2+2x+65 | | -15=-3+3w | | 9x-51=8x-10 | | 4^x+4^(x-1)=80 | | -7n+-9=-30 | | 1/2(3x-17)=1/6(8x-10) | | X=x/3+12 | | -4.9t^2+3.8t=-10 | | (x/5)-7=6 | | -39=-7x+5(x-5) | | 2.26b=17.6 | | 7h-5=-9 | | (m/8)+5=5 | | (x/3)-16=-14 | | 3x+18.50-3x=18.50 | | 0=36x^2-478-2463 | | 2x2-x=2x-1 | | 0=45x^2-492x-2466 | | 1÷x-5=0 | | F(x)=π/x |